organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-N-Benzyl-2,6-dideoxy-2,6-imino-3,4-O-isopropylidene-3-C-methyl-D-allononitrile

Benjamin J. Ayers,^a Sarah F. Jenkinson,^a* George W. J. Fleet^a and Amber L. Thompson^b

^aDepartment of Organic Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England, and ^bDepartment of Chemical Crystallography, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, England Correspondence e-mail: sarah.jenkinson@chem.ox.ac.uk

Received 12 April 2012; accepted 14 April 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; R factor = 0.041; wR factor = 0.106; data-to-parameter ratio = 10.4.

X-ray crystallography firmly established the relative stereochemistry of the title compound, $C_{17}H_{22}N_2O_3$. The absolute configuration was determined by use of 2-*C*-methyl-Dribonolactone as the starting material. The compound exists as $O-H \cdots N$ hydrogen-bonded chains of molecules running parallel to the *a*-axis.

Related literature

For 2-*C*-methyl sugar lactones and their use in synthesis, see: da Cruz *et al.* (2011); Best *et al.* (2010); da Cruz & Horne (20086); Booth *et al.* (2008); Hotchkiss, Soengas *et al.* (2007); Hotchkiss, Kato *et al.* (2007); Hotchkiss *et al.* (2006); Sowden & Strobach (1960). For the biological activity of polyhydroxylated piperidines, see: Nash *et al.* (2011); Watson *et al.* (2001). For the extinction correction, see: Larson (1970). For the temperature controller, see: Cosier & Glazer (1986).

Experimental

Crystal data

 $\begin{array}{l} C_{17}H_{22}N_2O_3\\ M_r = 302.37\\ \text{Orthorhombic, } P2_12_12_1\\ a = 8.5647 \ (3) \ \text{\AA}\\ b = 10.0019 \ (4) \ \text{\AA}\\ c = 18.7031 \ (7) \ \text{\AA} \end{array}$

 $V = 1602.17 (10) \text{ Å}^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 150 K $0.25 \times 0.25 \times 0.20 \text{ mm}$

Data collection

Nonius KappaCCD diffractometer
Absorption correction: multi-scan
(DENZO/SCALEPACK;
Otwinowski & Minor, 1997)
 $T_{\rm min} = 0.96, T_{\rm max} = 0.98$ 7953 measured reflections
2082 independent reflections
1808 reflections with $I > 2\sigma(I)$
 $R_{\rm int} = 0.042$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	200 parameters
$vR(F^2) = 0.106$	H-atom parameters constrained
S = 0.97	$\Delta \rho_{\rm max} = 0.22 \ {\rm e} \ {\rm \AA}^{-3}$
2082 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	<i>D</i> -H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
O1-H11···N4 ⁱ	0.88	2.15	2.997 (3)	161
Summatry and (i) y	. 1	1		

Symmetry code: (i) $x - \frac{1}{2}, -y + \frac{3}{2}, -z + 1$.

Data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK*; program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5456).

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Best, D., Jenkinson, S. F., Saville, A. W., Alonzi, D. S., Wormald, M. R., Butters, T. D., Norez, C., Becq, F., Bleriot, Y., Adachi, I., Kato, A. & Fleet, G. W. J. (2010). *Tetrahedron Lett.* **51**, 4170–4174.
- Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
- Booth, K. V., da Cruz, F. P., Hotchkiss, D. J., Jenkinson, S. F., Jones, N. A., Weymouth-Wilson, A. C., Clarkson, R., Heinz, T. & Fleet, G. W. J. (2008). *Tetrahedron Asymmetry*, **19**, 2417–2424.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Cruz, F. P. da & Horne, G. (2008). Tetrahedron Lett. 49, 6812-6815.
- Cruz, F. P. da, Newberry, S., Jenkinson, S. F., Wormald, M. R., Butters, T. D., Alonzi, D. S., Nakagawa, S., Becq, F., Norez, C., Nash, R. J., Kato, A. & Fleet, G. W. J. (2011). *Tetrahedron Lett.* 52, 219–223.
- Hotchkiss, D. J., Jenkinson, S. F., Storer, R., Heinz, T. & Fleet, G. W. J. (2006). *Tetrahedron Lett.* 47, 315–318.
- Hotchkiss, D. J., Kato, A., Odell, B., Claridge, T. D. W. & Fleet, G. W. J. (2007). *Tetrahedron Asymmetry*, **18**, 500–512.
- Hotchkiss, D. J., Soengas, R., Booth, K. V., Weymouth-Wilson, A. C., Eastwick-Field, V. & Fleet, G. W. J. (2007). *Tetrahedron Lett.* 48, 517–520.
- Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall & C. P. Huber, pp. 291–294. Copenhagen: Munksgaard.
- Nash, R. J., Kato, A., Yu, C.-Y. & Fleet, G. W. J. (2011). Future Med. Chem. 3, 1513–1521.
- Nonius (2001). COLLECT. Nonius BV, Delft, The Netherlands.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sowden, J. C. & Strobach, D. R. (1960). J. Am. Chem. Soc. 82, 3707-3708.
- Watkin, D. J., Prout, C. K. & Pearce, L. J. (1996). CAMERON. Chemical Crystallography Laboratory, Oxford, England.
- Watson, A. A., Fleet, G. W. J., Asano, N., Molyneux, R. J. & Nash, R. J. (2001). *Phytochemistry*, 56, 265–295.

supplementary materials

Acta Cryst. (2012). E68, o1474 [doi:10.1107/S1600536812016273]

2-N-Benzyl-2,6-dideoxy-2,6-imino-3,4-O-isopropylidene-3-C-methyl-D-allononitrile

Benjamin J. Ayers, Sarah F. Jenkinson, George W. J. Fleet and Amber L. Thompson

Comment

Many polyhydroxylated piperidines have been found to display interesting biological properties (Nash *et al.*, 2011; Watson *et al.*, 2001). 2-*C*-Methyl lactones, derived from sugars (Hotchkiss, Soengas *et al.*, 2007; Sowden & Strobach, 1960; Hotchkiss *et al.*, 2006), have been used for the synthesis of iminosugars bearing a carbon branch (da Cruz *et al.*, 2011; Best *et al.*, 2010; da Cruz *et al.*, 2008; Hotchkiss, Kato *et al.*, 2007). In a new one-pot approach to carbon-branched piperidines, the α -iminonitrile **4** was prepared from the lactol tosylate **3**, itself readily available in two steps from 2-*C*methyl-D-ribonolactone **1** (Booth *et al.*, 2008), by Strecker α -aminonitrile formation and concomitant intramolecular tosylate displacement (Fig. 1).

X-ray crystallography firmly established the relative stereochemistry of the title compound **4**. The absolute configuration was determined by the use of 2-*C*-methyl-D-ribonolactone **1** as the starting material. The acetonide ring adopts an envelope conformation with C16 out of the plane and the piperidine ring adopts a chair conformation (Fig. 2). The compound exists as O—H···N hydrogen-bonded chains of molecules running parallel to the *a*-axis (Fig. 3). Only classical hydrogen-bonding was considered.

Experimental

α-Iminonitrile **4** was recrystallized by diffusion from a mixture of ethyl acetate and cyclohexane: m.p. 394–395 K; $[\alpha]_D^{20}$ +39.7 (*c* 5.5, methanol).

Refinement

In the absence of significant anomalous scattering, Friedel pairs were merged and the absolute configuration was assigned from the starting material.

The H atoms were all located in a difference map, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry (C—H in the range 0.93–0.98, O—H = 0.82 Å) and U_{iso} (H) (in the range 1.2–1.5 times U_{eq} of the parent atom), after which the positions were refined with riding constraints.

Computing details

Data collection: *COLLECT* (Nonius, 2001).; cell refinement: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); data reduction: *DENZO/SCALEPACK* (Otwinowski & Minor, 1997); program(s) used to solve structure: *SIR92* (Altomare *et al.*, 1994); program(s) used to refine structure: *CRYSTALS* (Betteridge *et al.*, 2003); molecular graphics: *CAMERON* (Watkin *et al.*, 1996); software used to prepare material for publication: *CRYSTALS* (Betteridge *et al.*, 2003).

Reagents and conditions: i) TsCl, pyridine, 16 h, RT; ii) DIBALH, DCM, 1 h, -78 °C; iii) BnNH₂, AcOH, KCN, MeOH, 3 d, RT.

Figure 1

Synthetic Scheme

Figure 2

The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Packing diagram for the crystal projected along the *b*-axis. Hydrogen bonds are shown as dotted lines.

2-N-Benzyl-2,6-dideoxy-2,6-imino-3,4-O-isopropylidene- 3-C-methyl-D-allononitrile

Crystal data

C₁₇H₂₂N₂O₃ $M_r = 302.37$ Orthorhombic, $P2_12_12_1$ Hall symbol: P 2ac 2ab a = 8.5647 (3) Å b = 10.0019 (4) Å c = 18.7031 (7) Å V = 1602.17 (10) Å³ Z = 4

Data collection

Nonius KappaCCD diffractometer Graphite monochromator ω scans Absorption correction: multi-scan (*DENZO/SCALEPACK*; Otwinowski & Minor, 1997) $T_{\min} = 0.96, T_{\max} = 0.98$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.106$ S = 0.97 F(000) = 648 $D_x = 1.253 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1959 reflections $\theta = 5-27^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 150 KBlock, colourless $0.25 \times 0.25 \times 0.20 \text{ mm}$

7953 measured reflections 2082 independent reflections 1808 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \theta_{min} = 5.2^{\circ}$ $h = -11 \rightarrow 11$ $k = -12 \rightarrow 12$ $l = -24 \rightarrow 24$

2082 reflections 200 parameters 0 restraints Primary atom site location: structure-invariant direct methods

Hydrogen site location: inferred from	$(\Delta/\sigma)_{\rm max} = 0.0002994$
neighbouring sites	$\Delta \rho_{\rm max} = 0.22 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	$\Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$
Method = Modified Sheldrick $w = 1/[\sigma^2(F^2) +$	Extinction correction: Larson (1970), Equation
$(0.07P)^2 + 0.23P$],	22
where $P = (\max(F_0^2, 0) + 2F_c^2)/3$	Extinction coefficient: 280 (110)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K.

Fractional	atomic	coordinates	and ise	otropic	or e	auivalent	isotropi	ic dis	placement	parameters	$(Å^2$?]
1 i actionat	aronne	coordinates	01100 150	$p_{ii} \circ p_{ic}$	01 01	90000000000000	15011001	ie www.	pracement	parameters	(* *	1

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.28415 (17)	0.66972 (14)	0.47877 (7)	0.0285
C2	0.3904 (2)	0.7319 (2)	0.52685 (10)	0.0240
C3	0.4656 (2)	0.62006 (19)	0.56970 (10)	0.0245
N4	0.58010 (19)	0.67473 (16)	0.62140 (8)	0.0237
C5	0.6509 (2)	0.5619 (2)	0.66204 (10)	0.0290
C6	0.7562 (2)	0.47284 (19)	0.61857 (10)	0.0252
C7	0.9075 (2)	0.5134 (2)	0.60165 (11)	0.0298
C8	1.0092 (3)	0.4276 (2)	0.56690 (11)	0.0356
C9	0.9612 (3)	0.2999 (2)	0.54895 (12)	0.0377
C10	0.8116 (3)	0.2586 (2)	0.56503 (13)	0.0377
C11	0.7094 (3)	0.3444 (2)	0.59975 (12)	0.0317
C12	0.4923 (2)	0.7579 (2)	0.67274 (10)	0.0258
C13	0.5940 (3)	0.8056 (2)	0.73119 (12)	0.0349
N14	0.6690 (3)	0.8455 (3)	0.77702 (12)	0.0563
C15	0.4085 (2)	0.8802 (2)	0.63836 (10)	0.0258
C16	0.3102 (2)	0.8340 (2)	0.57458 (10)	0.0251
O17	0.17610 (16)	0.77936 (14)	0.60920 (7)	0.0267
C18	0.1432 (2)	0.8661 (2)	0.66828 (11)	0.0322
019	0.29237 (16)	0.92224 (14)	0.68874 (8)	0.0293
C20	0.0777 (3)	0.7836 (3)	0.72865 (12)	0.0435
C21	0.0377 (3)	0.9798 (3)	0.64619 (15)	0.0503
C22	0.5170 (3)	0.9967 (2)	0.62255 (12)	0.0337
H21	0.4744	0.7726	0.4999	0.0256*
H31	0.5218	0.5592	0.5364	0.0293*
H32	0.3838	0.5684	0.5958	0.0277*
H51	0.5641	0.5120	0.6821	0.0339*
H52	0.7138	0.6041	0.7009	0.0357*
H71	0.9426	0.5985	0.6148	0.0359*
H81	1.1119	0.4591	0.5562	0.0416*
H91	1.0304	0.2415	0.5259	0.0458*
H101	0.7821	0.1690	0.5530	0.0463*
H111	0.6056	0.3166	0.6118	0.0379*
H121	0.4100	0.7095	0.6953	0.0311*
H161	0.2829	0.9145	0.5454	0.0290*
H203	0.0584	0.8381	0.7698	0.0637*
H202	-0.0209	0.7457	0.7123	0.0635*

supplementary materials

H201	0.1521	0.7143	0.7417	0.0639*
H211	0.0220	1.0417	0.6876	0.0718*
H212	-0.0621	0.9372	0.6318	0.0712*
H213	0.0838	1.0319	0.6067	0.0702*
H223	0.4563	1.0631	0.5969	0.0499*
H222	0.6019	0.9635	0.5928	0.0502*
H221	0.5578	1.0406	0.6665	0.0511*
H11	0.2417	0.7301	0.4504	0.0457*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0278 (7)	0.0332 (7)	0.0244 (6)	0.0012 (7)	-0.0070 (6)	-0.0039 (6)
C2	0.0225 (10)	0.0293 (10)	0.0201 (8)	-0.0011 (8)	-0.0021 (8)	-0.0007 (8)
C3	0.0242 (9)	0.0254 (9)	0.0239 (9)	0.0009 (8)	-0.0016 (8)	0.0003 (8)
N4	0.0231 (8)	0.0267 (8)	0.0215 (7)	0.0005 (7)	-0.0002 (7)	-0.0002 (7)
C5	0.0277 (10)	0.0346 (11)	0.0249 (9)	0.0025 (9)	-0.0021 (8)	0.0032 (9)
C6	0.0253 (9)	0.0272 (10)	0.0233 (9)	0.0004 (8)	-0.0041 (8)	0.0050 (8)
C7	0.0295 (10)	0.0318 (10)	0.0281 (10)	-0.0015 (9)	-0.0036 (9)	0.0040 (9)
C8	0.0264 (11)	0.0433 (12)	0.0370 (11)	0.0009 (10)	0.0014 (9)	0.0064 (10)
C9	0.0368 (12)	0.0367 (12)	0.0397 (12)	0.0081 (10)	0.0054 (10)	0.0025 (10)
C10	0.0386 (12)	0.0288 (10)	0.0457 (12)	0.0000 (10)	-0.0020 (11)	-0.0007 (10)
C11	0.0254 (10)	0.0320 (10)	0.0377 (11)	-0.0020 (10)	-0.0031 (9)	0.0022 (9)
C12	0.0202 (9)	0.0347 (10)	0.0226 (8)	-0.0004 (9)	-0.0014 (8)	-0.0006 (8)
C13	0.0287 (10)	0.0480 (13)	0.0280 (10)	0.0089 (10)	-0.0025 (9)	-0.0087 (10)
N14	0.0397 (12)	0.0796 (16)	0.0496 (13)	0.0170 (13)	-0.0156 (10)	-0.0290 (13)
C15	0.0225 (9)	0.0295 (10)	0.0254 (9)	-0.0005 (9)	0.0015 (8)	-0.0028 (8)
C16	0.0233 (9)	0.0274 (9)	0.0246 (9)	0.0006 (8)	-0.0010 (7)	0.0000 (8)
O17	0.0214 (7)	0.0322 (7)	0.0266 (7)	-0.0012 (6)	0.0021 (6)	-0.0085 (6)
C18	0.0240 (10)	0.0411 (12)	0.0314 (11)	0.0006 (9)	-0.0023 (9)	-0.0138 (9)
019	0.0219 (7)	0.0362 (8)	0.0297 (7)	-0.0004 (6)	0.0010 (6)	-0.0104 (6)
C20	0.0300 (12)	0.0660 (16)	0.0346 (11)	-0.0147 (12)	0.0082 (10)	-0.0152 (12)
C21	0.0372 (13)	0.0574 (16)	0.0563 (15)	0.0182 (13)	-0.0146 (12)	-0.0231 (13)
C22	0.0346 (11)	0.0305 (10)	0.0362 (11)	-0.0075 (10)	0.0036 (10)	-0.0040 (9)

Geometric parameters (Å, °)

01-C2	1.422 (2)	C11—H111	0.958
01—H11	0.882	C12—C13	1.477 (3)
C2—C3	1.519 (3)	C12—C15	1.557 (3)
C2—C16	1.521 (3)	C12—H121	0.954
C2—H21	0.968	C13—N14	1.143 (3)
C3—N4	1.482 (2)	C15—C16	1.531 (3)
C3—H31	0.994	C15—O19	1.433 (2)
С3—Н32	0.998	C15—C22	1.519 (3)
N4—C5	1.490 (2)	C16—O17	1.427 (2)
N4—C12	1.477 (2)	C16—H161	0.999
C5—C6	1.506 (3)	O17—C18	1.433 (2)
C5—H51	0.971	C18—O19	1.447 (2)
С5—Н52	0.998	C18—C20	1.507 (3)

C6—C7	1.394 (3)	C18—C21	1.510 (3)
C6—C11	1.391 (3)	C20—H203	0.958
C7—C8	1.385 (3)	C20—H202	0.975
C7—H71	0.935	C20—H201	0.972
C8—C9	1.383 (3)	C21—H211	1.000
C8—H81	0.956	C21—H212	0.992
C9—C10	1.380 (4)	C21—H213	0.987
C9—H91	0.937	C22—H223	0.971
C10—C11	1.387 (3)	C22—H222	0.974
C10—H101	0.958	C22—H221	0.995
	0.000		01990
C2-01-H11	110.2	N4—C12—H121	112.2
01-C2-C3	106.45 (16)	C13-C12-H121	105.8
$01 - C^2 - C^{16}$	112.06(16)	C15 - C12 - H121	103.9
C_{3} C_{2} C_{16}	112.00 (10)	C12 - C13 - N14	1777(2)
01 - C2 - H21	109.3	C12 - C15 - C16	109.79(16)
$C_{1}^{2} = C_{2}^{2} = H_{2}^{2}$	105.6	C12 - C15 - C10	105.75 (10)
$C_{3} = C_{2} = H_{21}$	105.0	C12 - C15 - O19	100.20(13) 102.67(15)
$C_{10} - C_{2} - M_{21}$	111.0	C10 - C15 - C13	102.07(13)
$C_2 = C_3 = H_2 I$	110.08 (15)	C12-C15-C22	113.01 (10)
$C_2 = C_3 = H_2 I$	109.0	C10-C15-C22	114.30(10) 100.11(16)
N4 - C3 - H31	108.3	019 - 015 - 022	109.11 (16)
C2—C3—H32	110.0	C15-C16-C2	114.30 (16)
N4—C3—H32	109.6		101.79 (14)
H31—C3—H32	109.2	$C_2 = C_{16} = 0_{17}$	111.85 (16)
C3—N4—C5	108.84 (15)	C15—C16—H161	108.1
C3—N4—C12	107.17 (15)	C2—C16—H161	109.1
C5—N4—C12	107.60 (14)	O17—C16—H161	111.5
N4—C5—C6	114.61 (15)	C16—O17—C18	106.03 (14)
N4—C5—H51	105.9	O17—C18—O19	105.37 (15)
С6—С5—Н51	111.3	O17—C18—C20	108.63 (18)
N4—C5—H52	105.7	O19—C18—C20	110.04 (17)
C6—C5—H52	108.7	O17—C18—C21	111.28 (18)
H51—C5—H52	110.5	O19—C18—C21	107.97 (18)
C5—C6—C7	120.47 (18)	C20—C18—C21	113.3 (2)
C5—C6—C11	120.68 (19)	C18—O19—C15	108.96 (14)
C7—C6—C11	118.6 (2)	C18—C20—H203	110.8
C6—C7—C8	120.7 (2)	C18—C20—H202	107.5
С6—С7—Н71	120.2	H203—C20—H202	108.8
С8—С7—Н71	119.0	C18-C20-H201	109.6
C7—C8—C9	120.0 (2)	H203—C20—H201	108.5
C7—C8—H81	118.2	H202—C20—H201	111.7
С9—С8—Н81	121.8	C18—C21—H211	109.6
C8—C9—C10	120.0 (2)	C18—C21—H212	105.4
С8—С9—Н91	120.0	H211—C21—H212	111.2
С10—С9—Н91	120.1	C18—C21—H213	111.3
C9—C10—C11	120.2 (2)	H211—C21—H213	107.9
С9—С10—Н101	118.3	H212—C21—H213	111.6
C11—C10—H101	121.5	C15—C22—H223	107.1
C6—C11—C10	120.5 (2)	C15—C22—H222	107.8

C6—C11—H111	118.4	H223_C22_H222	110.5
C10-C11-H111	121.1	C15 - C22 - H221	113.1
N4-C12-C13	111 28 (16)	H223—C22—H221	107.1
N4—C12—C15	114.13 (15)	H222—C22—H221	111.1
C13—C12—C15	108.91 (17)	-	

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
C22—H222…O1 ⁱ	0.97	2.45	3.405 (3)	167
O1—H11····N4 ⁱⁱ	0.88	2.15	2.997 (3)	161

Symmetry codes: (i) *x*+1/2, -*y*+3/2, -*z*+1; (ii) *x*-1/2, -*y*+3/2, -*z*+1.